

The Paradox of Stability: How Non-Proliferation Failures Reinforce Nuclear Deterrence

Dr. Noshwan Adil

¹Assistant Professor in Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Islamabad.

noshwanadilrehman@gmail.com / dr.noshwan@szabist-isb.edu.pk

The focus of this research is the paradox of failure of nuclear non-proliferation and the paradox of success of nuclear deterrence. Despite the fact that the global non-proliferation regime which is centered on the Nuclear Non-Proliferation Treaty (NPT) has been unsuccessful in stopping both horizontal and vertical proliferation, the failure to do so has, paradoxically, buttressed deterrence stability among nuclear states. This paper posits that selective non-compliance, the erosion of the non-proliferation norms, and the inequitable application of the non-proliferation regime have led states to depend on nuclear deterrence more as a means of preserving their existence and their strategic autonomy. Proliferation failures have not yielded a systemic collapse; instead, they have bolstered deterrence thinking by causing states to act more prudently, to improve their second strike capabilities, and to heighten mutual vulnerability which is often referred to as 'the paradox of mutual vulnerability' or 'the vulnerability paradox' among competing states. This study applies deterrence theory in conjunction with a number of contemporary examples to demonstrate the fear sustaining stability that non-proliferation failures do not come with legally imposed constraints. This study illustrates the paradox of deterrence that the normative decline of global non-proliferation has illustrated so starkly. In addition, the study goes beyond the assumptions of liberal institutionalism.

Keywords: Nuclear Deterrence; Non-Proliferation Regime; Strategic Stability; NPT; Security Dilemma

Article Details:

Received on 19 Jan, 2026

Accepted on 09 Feb, 2026

Published on 11 Feb, 2026

Corresponding Authors*

Introduction

In the contemporary world, the growing concern of nuclear proliferation is one of the most contentious subjects in global security dynamics (Ogilvie-White, 1996). The international community sees nuclear non-proliferation as one of its main objectives, as evidenced by the adoption of the Nuclear Non-Proliferation Treaty (NPT) in 1968. Fortunately, the majority of countries commit to their terms and conditions. However, despite various denuclearization and containment efforts from the international community, the non-proliferation framework has several weaknesses, from enforcement and vagueness to ambiguities related to what constitutes non-compliance. Almost every signatory to the NPT has been caught seeking to either acquire or increase nuclear capabilities. On the contrary, large-scale conflicts have been successfully prevented by the concept of nuclear deterrence, particularly during the Cold War and in regions like South Asia (Rauf, 2000).

Despite the destructive nature of the nuclear weapons observed in Hiroshima and Nagasaki during World War II, acquiring nuclear weapons is still in the interests of many states. The US became the first country to become a Nuclear Weapon State (NWS) courtesy of the Manhattan Project. Distrust of America, the Soviet Premier Joseph Stalin also initiated the Soviet Project (1942), led by Soviet physicist Igor Kurchatov 1. Stalin's efforts and Igor's headship led the Soviet Union to eventually detonate its first plutonium bomb, the RDS-I, in Kazakhstan. (Holloway, 1981) Subsequently, the US detonated first-ever hydrogen bomb in November 1952. The severity of the US's newly developed hydrogen bomb was five hundred times more severe than the one dropped on Hiroshima and equivalent to about ten million tons of Trinitrotoluene (TNT). Emulating the US, the Soviet Union also successfully detonated its first hydrogen bomb just one year later, in 1953 (Waltz, 1981). The fierce US-Soviet competition led to the rapid buildup of more powerful nuclear arsenals and stimulated the UK, France, and China to successfully test their respective atomic bombs in 1952, 1960, and 1964, respectively.

Hence, to this day, there are eight official NWS, those being the US, Russia, UK, France, China, India, Pakistan, and North Korea. Despite never testing, Israel is widely believed to be a nuclear-capable state. The NWS started to believe that the proliferation of nuclear weapons would eventually lead to nuclear war. Therefore, the NPT was signed in 1968 and ratified in 1970 by NWS to limit the spread of nuclear weapons through disarmament, non-proliferation, and the peaceful uses of nuclear energy. The NPT categorized the official and non-official NWS, declaring the first five countries and permanent members of the United Nations Security Council (UNSC) as official NWS and the remaining countries as non-official NWS. The NPT prohibited NWS from assisting or providing nuclear weapon technology to Non-Nuclear-Weapon States (NNWS) (Bunn, 2003).

This research paper aims to examine the provision of stability amongst the hostile states via nuclear weapons by using a qualitative research design, focusing on comparative analysis of historical cases where deterrence and nuclear proliferation have intersected. Specific case studies, such as India, China, Iran, Iraq, and Pakistan, were discussed as a consequence of their non-compliance, proliferation, and deterrence. Though these case studies highlight the specific challenges to the NPT, they also showcase instances where deterrence may have contributed to regional stability. This paper analyzes the paradox of stability vis-à-vis nuclear proliferation and the failure of non-proliferation regimes, and applies the theory of deterrence as a theoretical perspective. Lastly, this research work relies on secondary sources, including academic articles and research papers, to gain a deeper understanding of the subject matter.

Theoretical Framework

The theory of deterrence has been central to international security since the advent of nuclear weapons. At its core, deterrence rests on the idea that the destructive potential of nuclear arms prevents adversaries from engaging in direct conflict. Thomas Schelling, one of the key proponents, argued that nuclear weapons function more as tools of coercion and bargaining than as instruments of war, since their use would bring catastrophic consequences to both sides. Bernard Brodie, another early theorist, emphasized that “the chief purpose of the military establishment must be to avert wars rather than to win them,” highlighting the unique role of nuclear deterrence in maintaining stability (Hunt, 1986). This shift from war-fighting to war-prevention laid the intellectual foundation for nuclear deterrence during the Cold War and beyond.

The Cold War offers the clearest example of deterrence in action. The US and the Soviet Union, despite their intense rivalry, avoided direct military confrontation due to the principle of Mutually Assured Destruction (MAD). Each side possessed enough nuclear weapons to guarantee unacceptable damage to the other, creating a balance of terror that paradoxically ensured peace at the strategic level. Even though the period witnessed proxy wars and regional conflicts, deterrence theory explains why a direct US–Soviet clash never occurred. As Schelling argued, the ability to inflict unacceptable costs on an adversary was enough to prevent escalation (Hasan, 1969).

The South Asian context further illustrates the stabilizing effect of nuclear weapons. India and Pakistan, long-standing rivals with a history of conventional wars, have avoided full-scale conflict since conducting nuclear tests in 1998. The Kargil War of 1999, which took place after both countries went overtly nuclear, remained limited in scope precisely because of the deterrence factor. While both countries engaged in limited infiltration, however they avoided widening the conflict to prevent nuclear escalation. This supports Kenneth Waltz’s argument that nuclear weapons, by raising the stakes of war, contribute to stability even in volatile regions (Faisal, 2020).

China’s nuclear policy also demonstrates deterrence dynamics. Since its first nuclear test in 1964, China has maintained a doctrine of minimum deterrence and no-first-use, designed to ensure survivable retaliatory capability rather than parity with superpowers. This restrained approach nonetheless deters adversaries like the US and India by signaling assured retaliation. For Pakistan, China’s role as a nuclear power indirectly strengthened its deterrence posture against India, as strategic alignment with Beijing helped Islamabad balance New Delhi’s conventional superiority. In this way, deterrence not only prevents war but also shapes regional alignments and power balances.

However, the failures of non-proliferation efforts highlight the paradox of nuclear stability. The Treaty on the NPT, criticized by countries like China for creating a nuclear monopoly, has not prevented states such as India, Pakistan, and North Korea from acquiring nuclear weapons. Yet, once these states developed nuclear arsenals, deterrence dynamics arguably reduced the risk of large-scale wars. This suggests that while non-proliferation efforts faltered, deterrence provided unintended strategic benefits by stabilizing rivalries.

Hence, the contributions of deterrence theorists such as Brodie, Schelling, and Waltz remain highly relevant for understanding contemporary nuclear politics. The Cold War balance between the US and the USSR, the constrained conflicts in South Asia, and China’s restrained nuclear posture all reinforce the claim that nuclear weapons, despite proliferation challenges, serve as “weapons of stability.” Rather than simply being tools of destruction,

nuclear arms underpin deterrence that prevents wars, making them paradoxically central to global security.

Dilemmas surrounding the Non-Proliferation Treaty (NPT)

The US Department of State explained America's official stance on the NPT as follows: "The US is committed to upholding and further strengthening its commitment to the NPT, while restoring the US leadership on arms race and non-proliferation." However, the non-proliferation regime fails to stop the nuclear proliferation to the countries not deemed as official NWS, such as India, Pakistan, and North Korea, along with Israel, which is largely believed as nuclear capable (Müller & Wunderlich, 2020). The rules of NPT only applies to signatory country, meaning that unofficial NWS such as India and Pakistan are not bound by the NPT rules. Similarly, the same criteria apply to North Korea, which had also terminated its commitment to the non-proliferation regimes in 2003. The idea of NPT was and is still unpopular despite its nature to maintain the status quo. Even though 191 countries have signed the NPT, the official NWS, such as France and China, did not sign until the early 1990s. Articles 1 and 2 prohibit the NWS from encouraging, transferring, aiding, assisting, or manufacturing nuclear weapons to the NNWS. Simultaneously, the NPT also bound the NNWS to agree not to receive the transfer or assistance of nuclear weapons directly or indirectly from the NWS (United Nations, 2025).

Article 3 of the NPT empowers the International Atomic Energy Agency (IAEA) to conduct inspections and ensure that both the NWS and NNWS keep in compliance with the rules and regulations of the NPT. However, the rules related to non-compliance remain vague in terms of what constitutes "noncompliance" and the consequences for those found guilty. Since 1991, the IAEA have discovered hidden activities of plutonium separation, uranium enrichment and other possible related activities in Iran, Iraq and North Korea (Bunn, 2003). Moreover, the IAEA have also found states of non-compliance on five occasions with the NPT rules: (1) Iraq in 1991 after the Gulf War, (2) Romania in 1992, (3) North Korea in 1993, (4) Libya in 2004, and (5) Iran in 2006 (Carlson, 2009). Despite non-compliance, the lack of punitive action against the above-mentioned states undermined the integrity, legitimacy, and credibility of the IAEA and the NPT.

The former US arms negotiator, Ambassador Robert T. Grey, confessed that "the NPT regime is battered and in need of strengthening" (Bunn, 2003). In 2009, the US former President Barack Obama, on the improvement of the NPT, suggested the "immediate consequences to countries caught breaking the rules." However, the ambiguity and lack of inclusivity in the definition of "non-compliance" and "cheating" may seem like a double-edged sword. Its advantage is the flexibility to allow the NPT and IAEA to deal with complex cases, but the disadvantage is that this flexibility carries a massive cost, which ultimately impacts the credibility and integrity of the IAEA safeguard system (Carlson, 2009).

One issue with the NPT is that member states are allowed to declare certain locations "off-guard" from IAEA inspectors conducting inspections. Moreover, the states will not be considered violating the NPT regulations if found using uranium and plutonium peacefully under the inspection of the IAEA. Several countries are following this practice, such as Japan. However, countries are found hiding their true intentions from IAEA inspectors while giving the impression that their uses are in accordance with the NPT, while conducting their nefarious affairs in secret. For instance, the plutonium separation and uranium enrichment in Iran, Iraq, and North Korea were believed to have taken place at these countries' undisclosed facilities (Bunn, 2003). The following section will discuss the failures of the NPT at length.

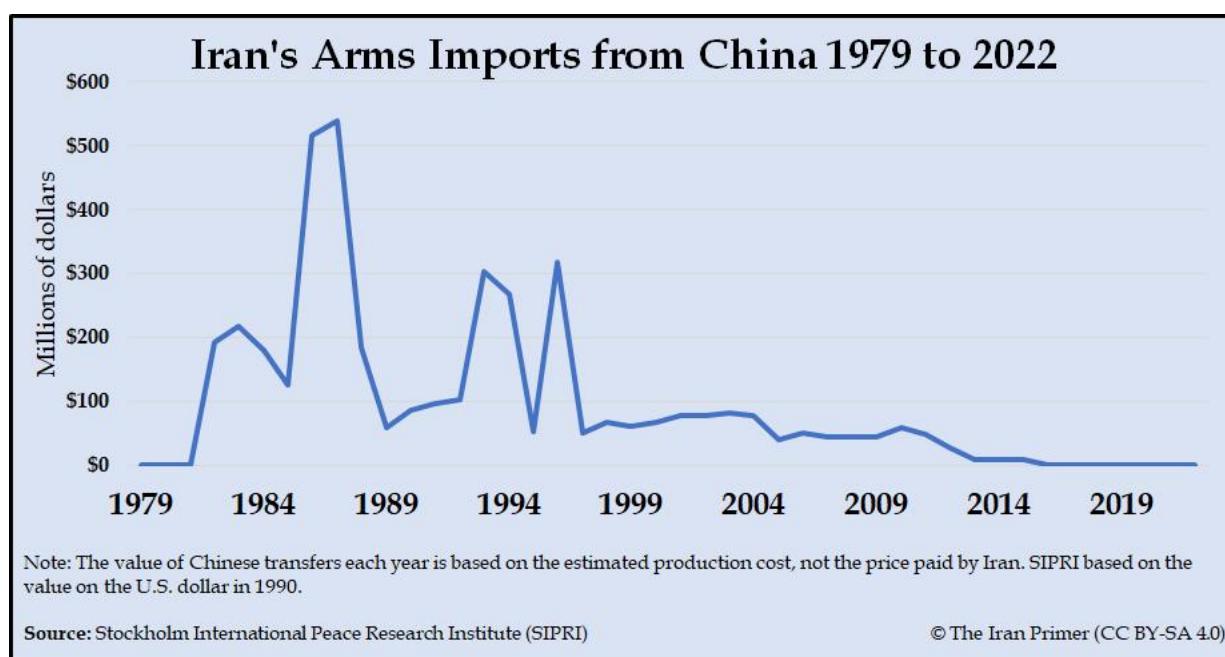
China

China's status as a nuclear weapons state and its role in non-proliferation remained complex because of its reluctance to join the NPT due to its discriminatory nature, referring to the major powers' nuclear monopoly and exploiting third-world countries to weaken their position on the world stage. Former leader of the People's Republic of China (PRC), Deng Xiaoping, also referred to Western non-proliferation efforts as modern-day colonialism, where the US and the USSR continue to expand their nuclear stockpile and limit the growth of other countries (Hunt, 1986). However, China's non-proliferation policy has undergone several changes throughout history. From its full rejection of the NPT in 1968, China started to accommodate Western interests of non-proliferation and became a member of the IAEA in 1984 and signed the NPT in 1992 (International Atomic Energy Agency, 2025).

China also declared a No First Use (NFU) policy and stated that it would adhere to "in principle" internationally accepted guidelines of not aiding NNWS to acquire nuclear weapons. However, China's behavior related to nuclear exports was not always consistent with its assurances. Beijing was suspected of assisting several NNWS, such as Pakistan and Iran, to build their respective nuclear program. Pakistan successfully tested its first nuclear weapon in May 1998, while Iran has been suspected of developing a weapons program. China's inconsistencies with its assurances further weaken the non-proliferation movements, as it was found assisting the nuclear programs of the NNWS (Nuclear Threat Initiative, 2024).

Sino-Pakistan Nuclear Cooperation

The existential threat from India stimulated Pakistan to become a member of the Southeast Asia Treaty Organization (SEATO) in 1954 and the Central Treaty Organization (CENTO) in 1955 to develop its defensive capabilities, which were far weaker than those of India at the time (U.S. Department of State, 2022). However, the inconsistency in the US-Pakistan relations in the 1950s brought Pakistan closer to China, and even Pakistan's membership of SEATO and CENTO could not affect the bilateral relationship. Even Beijing never supported India's position on Kashmir, and eventually, then Foreign Minister Z. A. Bhutto's statement of maintaining "a posture of warm friendship with the People's Republic of China" further solidified the bilateral alliance (Hasan, 1969). The Sino-India War (1962) and Indo-Pakistan War (1965), followed by India's successful hedging between the US and the Soviet Union for arms supplies, affected Pakistan, as its army was dependent on the West for survival against India (U.S. Department of State, 2022).


Against this backdrop, China became Pakistan's primary arms supplier, and in 1966, Foreign Minister Z. A. Bhutto famously stated, "eating grass" to get nuclear weapons (Singh, 1979). Bhutto's statement came only a year after China conducted its nuclear test, and Pakistan promptly nominated Foreign Secretary Agha Shahi to negotiate with China for collaboration. Shahi later confirmed the significance of China in the following words: "1965 was critical for us, we made a pact with Beijing that ushered decades of assistance we could not have gotten elsewhere" (Levy and Scott-Clark, 2007). In 1971, Pakistan strategically reciprocated China's bid for a seat at the UNSC as a member of the Permanent Five (P5), which further strengthened bilateral relations between the two nations. China amassed massive troops on the Indian border and also supported Pakistan in the 1971 war, and used its first veto in 1972 by opposing a resolution to admit Bangladesh as an independent state (Faisal, 2020). Moreover, President Bhutto visited China with a high-ranking scientific and military delegation by signing several agreements, including open supplies of arms and ammunition and secret discussions on nuclear cooperation.

Shahi testified that China offered to maintain Pakistan's nuclear reactor KANUUP site, originally maintained by Canada, but later refused to maintain it due to US pressure (Levy and Scott-Clark, 2007). The reactor was barely functioning by 1976 when the US intelligence spotted a Chinese technician on the site. China also agreed to supply uranium hexafluoride (UF6) for nuclear enrichment to fuel nuclear reactors and weapons. These activities made plain that Pakistan had started its nuclear program after India detonated its first nuclear weapon with the codename "Smiling Buddha" in 1974. In 1980, the US National Security Advisor, Dr. Brzezinski, met the Foreign Secretary of Pakistan, Agha Shahi, to discuss Pakistan's nuclear program and pressed Shahi about Islamabad's ambition of acquiring nuclear weapons. However, Shahi acknowledged the US concerns and stated Pakistan had "received no outside funding, is not engaged in a weapons program and would not transfer sensitive nuclear technology to other countries" (U.S. Department of State, 2022).

President Reagan and President H. W. Bush administration raised several concerns over Chinese assistance to Pakistan's nuclear program in following areas such as operation of Kahuta enrichment program, design for nuclear devices, provision of gas centrifuge for the upgradation of weapon-grade uranium, assistance with the production of fissile material, and selling of tritium gas used to produce fusion in hydrogen bombs (Ramana, 2003) and helped Pakistan to upgrade from PARR-I reactor to PARR-II reactor by doubling its capacity from five megawatts to ten (Burr, 2004). Sino-Pakistan collaboration assisted Pakistan in simultaneously conducting five nuclear tests in the same month as India's nuclear test in 1998 (Narang, 2010). However, Pakistan was not the only country with which China was accused of assisting with the nuclear proliferation.

Sino-Iran Nuclear Cooperation

Sino-Iran nuclear cooperation throughout the mid-1980s and 1990s raised serious suspicions over Beijing's commitment to nuclear non-proliferation. Iran had an extremely ambitious nuclear program in the monarchial era of Reza Shah Pahlavi, backed by Western States. However, the Iranian Revolution (1979) brought Iranian leader Ayatollah Khomeini to power, who eventually suspended the Iranian nuclear program, citing its contradiction with the basic tenets of Islam (Bhagat, 2007). Nonetheless, the Iran-Iraq War (1980-88) roused Khomeini to revive the nuclear program, which brought China and Iran closer to each other. The following graph shows growing collaboration between Iran and China from 1979 to 2022.

Source: United States Institute of Peace

The Sino-Iran nuclear agreement signed in 1982 (discovered in 2003) stimulated Iran to launch a secret uranium enrichment program. The agreement enabled China to construct and provide fissile material for four reactor cores at Iran's Isfahan Nuclear Research Center (Gill, 1998). The US official stated that the nuclear reactor did not pose a direct proliferation risk; however, it enabled Iranian scientists to learn design principles to indigenously construct a reactor for plutonium production. The secret agreement allowed fifteen Iranian scientists to receive reactor design training from Isfahan Nuclear Research Center, which began to operate in 1984 and declared an "official" nuclear facility in 1992. The Isfahan Nuclear Research Center was initially declared safe by the IAEA, but the thorough inspection in 2003 revealed several secret rooms for covert activities previously not exposed to the IAEA (Garver, 2006).

In 1987, Iran purchased the design and components of a centrifuge for uranium enrichment from A.Q. Khan (Reardon, 2012) and China provided Iran with nuclear technology, equipment, and material to operate their facility freely, courtesy of secret agreements between China and Iran from 1989 to 1991 (Davis, 1995). Iran and Syria also developed surface-to-surface missiles through joint military industries, and China's collaboration with Pakistan's A.Q. Khan Network raised serious proliferation concerns in the West. Subsequently, the US questioned China's allegiance to non-proliferation while providing secret training to Iranian engineers and building nuclear reactors and sharing nuclear reactor technology with Iran, the claims extensively denied by Chinese Premier Li Peng as "utterly groundless" (Garver, 2006). In 1991, however, the Chinese foreign minister agreed to transfer the nuclear reactor to Iran for "peaceful purposes" courtesy of the secret Sino-Iran agreements from 1989 to 1991 (Gill, 1998).

Iraq

Unlike other developing countries, the number of factors that contributed to Iraq's development of strong unconventional capabilities, such as massive financial resources, a team of competent engineers and scientists, cordial relations with the West until the first Gulf War (1991), and some degree of tolerance from the West related to Iraq's stockpiling of chemical weapons in the 1980s (Baghat, 2007). The US suspicions vis-à-vis Iraq's nuclear intentions arose when Baghdad used its oil wealth to build its Osirak reactor for the development of a plutonium bomb with the help of France and Italy. Though Iraqi officials

claimed it was “intended use of plutonium for peaceful purposes (Samore, 1994).” However, in the mid-1980s, a series of events affected the Iraqi nuclear program: First, the Iran-Iraq war (1980-88); Second, the West’s reluctance to provide nuclear assistance to Iraq; third, Israel’s destruction of the Osirak reactor in 1981 by dropping a total of sixteen 2,000 lb iron bombs, destroying the facility.

The Israeli government reported the following three reasons for its own attack on the Osirak reactor: 1) Iraq’s imminent plan to acquire nuclear weapons, 2) the Iraqi President’s consistent denial of Israel’s right to exist, and 3) the failure of Israeli diplomatic efforts to prevent Iraq from implementing the nuclear program. Moreover, the government of Israel also cited Article 51 of the UN Charter, which grants member states the “inherent right of self-defense in the event of an attack.” Israel received universal condemnation for its attack on the Osirak reactor. The US temporarily suspended the delivery of F-16s to Israel, questioning its legitimate self-defense purposes (Battle & Burr, 2021).

The director general of the IAEA, Dr. Ekuld, and the two US scientists, Dr. Herbert Koutz and Dr. Eugene Weinstock, criticized Israel’s attack as “an attack on the NPT and had no technical justification (Wilson, 1991).” Resolution 487, passed by the UNSC, termed the Israeli attack as “a clear violation of the UN norms and international conduct” (Baghat, 2007), refrained Israel from taking certain actions in the future, and requested Jerusalem to place its nuclear facility under the IAEA inspection and compensate Iraq for its destroyed facility. In response, Israel informed the UNSC about its lack of confidence in the non-proliferation regime and refused to open its facility to the IAEA and declined to pay any compensation to Iraq (United Nations Security Council, 1981).

Later, Iraq’s efforts to design and build a gas centrifuge were met with organized efforts and diplomatic pressure from the US, threatening Iraq with strained relations with the outside world. Subsequently, Iraq’s invasion of Kuwait in 1990 led the West to discover many of its nuclear complexes, which were eventually destroyed by the US-led coalition partner in an extensive air campaign. Moreover, the UNSC also passed a number of resolutions to force Iraq to open to IAEA inspection. The status of Iraq’s reconstituted nuclear program after the Osirak strike raised several questions on the NPT and the inspection capabilities of the IAEA (Zifferero, 1993).

Benefits of Nuclear Weapons

The failure of the non-proliferation regimes in being unable to prevent the nuclear program of the above-stated countries proved the fragility of the non-proliferation movements, and those who broke the rules suffered no serious consequences. Though nuclear non-proliferation is difficult to achieve, nuclear proliferation serves strategic purposes that have been successful in preventing countries from engaging in war. The following section will discuss the role of deterrence in helping NWS to stabilize relations with each other.

Deterrence is the practice of using threats to dissuade an actor from taking a certain action. Instead of forcing an action to be taken, deterrence involves an effort to stop or prevent an action from being taken (Mazarr, 2008). There are many types of deterrence, such as general deterrence, immediate deterrence, conventional deterrence, extended deterrence, nuclear deterrence, deterrence by denial, and deterrence by punishment. But the two main types: conventional deterrence and nuclear deterrence will be highlighted in the following section. Conventional deterrence lacks reliability; for instance, the military losses from India disintegrated Pakistan in 1971 were still inescapable despite having its defense agreements with the US.

The US provided military arms by employing conventional deterrence to Taiwan against China for several decades, courtesy of its strategic partnership in the Indo-Pacific region (U.S. Department of State, 2022). However, the US faced various difficulties in combating China's growing influence due to its aggressive policy in the Taiwan Strait. China is often found playing war games with the US and the Taiwanese army over their claim of declaring the Taiwan Strait as "international waters." These war games include taunting the US and Taiwanese pilots, deployment of naval vessels along the border, and flying into Taiwanese airspace, encouraging the US for misadventure (Eaglen and John Ferrari, 2022). However, the US unconventional approach remained unsuccessful because of the following reasons: 1) China swiftly supported the US support to Taiwan, courtesy of geographical proximity.

President Trump practiced the strategy of military deterrence in the Taiwan Strait by announcing the regular passage of the US warships through the Strait, a policy continued by the President Biden administration. In 2021, President Biden sent 13 military aircraft into Taiwan's Air Defense Identification Zone (ADIZ) to force China to ease pressure on Taiwan. On the contrary, China sent 13 military aircraft the next day into the ADIZ (Madoka, 2022). 2) The US provision of troops to Taiwan is restricted by physical proximity, while China can compel Taiwan through its aggressive policy with great ease. The US limitations question the efficiency of its support to Taiwan in case of military escalation between the two countries.

On the contrary, the distinguished political scientist Kenneth Waltz argued that, unlike conventional deterrence, nuclear deterrence, characterized by nuclear proliferation, can help states to serve both strategic and defensive purposes while also contributing to promoting peace among arch-rivals. He further stated that "the absolute quality of nuclear weapons sharply sets a nuclear world off from a conventional one" (Krieger and Ariel Ilan Roth, 2022). The pertinent example of the efficiency of nuclear deterrence is the Iraq invasion of Kuwait (1990). Iraqi President Saddam Hussein miscalculated the US capability, citing that he did not fear a US response, as American society was unwilling to accept 10,000 casualties (Hoagland, 1990). However, General H. Norman Schwarzkopf launched an extensive air campaign against Iraqi forces and promptly gained air superiority, which led to the US's quick victory and minimal casualties (Perry, 1991).

Waltz also discussed the fear of miscalculation, which is reasonably higher in conventional warfare compared to nuclear conflicts. He further argued that "the probability of major war among states having nuclear weapons approaches zero even at the conventional level." His article "*Nuclear Myths and Political Realities*" discussed the Cold War era when the US and the USSR's nuclear stockpile, the second strike capability, and the Mutually Assured Destruction (MAD) led to the bilateral stalemate (Waltz, 1990). Hence, nuclear deterrence has the potential to assure peace and stability because of its destructive potential, which is further decreased by the collective security mechanism of the North Atlantic Treaty Organization (NATO) (NATO, 2023).

Nuclear deterrence is also credited with managing geostrategic tensions in one of the most fragile regions of the world. For instance, Waltz referred to the case study of South Asia, referring to both India and Pakistan, mentioning the non-existence of peace since their inception, and how nukes restricted unending conventional wars (Waltz, 2000). Several key events prompted both countries to acquire nuclear weapons capabilities: For India, to achieve regional hegemony and counter the growing Chinese influence in South Asia, and to settle the border dispute with both Pakistan and India peacefully. For Pakistan, to ensure national security concerns and counter the existential threat from India. For this purpose, Pakistan aimed to diversify its strategic partnership by not making the mistake of relying on a single

partner, the mistake Pakistan made with the West, which cut its military support to Pakistan during the 1965 Indo-Pakistan war (Hymans, 2006).

China also credits its nuclear program mainly to deter external military threats, especially the US. Throughout the 1950s, the US threatened China with the use of nuclear weapons during the Korean War (1950-53) to bring a prompt end to the war. Although the US never carried out the bluff, the continuous threat from the US forced the Chinese to eventually acquire nuclear weapons. Chinese officials also stated that Beijing opposed the US imperialist policies of nuclear threat and nuclear blackmail. Moreover, China's deteriorating relations with the USSR in the mid-1950s as a result of Soviet leader Nikita Khrushchev pulling out of several agreements related to its assistance in China's production of atomic weapons and the continuous border dispute with India eventually led to the war between the countries, which were the main results of Chinese efforts to develop a nuclear bomb (Shen, 2008).

South Asia's characteristics of threat perception, defense dilemma, and power struggle also exist in the Middle East, which remains one of the contributing factors to the states' quest to acquire nuclear weapons. The events such as inception of Israel, Muslim's rejection of Israel statehood, US-Iran deteriorating relations following the Iranian revolution (1979), Iran's quest to acquire nukes as a consequence of Israel possession of nuclear triad, Iran-Iraq war (1980-88) and the international community indifference on Iraq use of chemical weapons against Iran, and lastly Iran fear of attack vis-à-vis the US since 2003 after NATO invasion in Afghanistan (2001) and Iraq (2003) (Baghat, 2008) were the contributing factors that sought the Middle Eastern countries especially Iran to acquire nuclear weapons. To conclude, history testifies that only nuclear deterrence enabled the hostile states to maintain regional peace and stability due to the fear of MAD, nuclear triad, and second strike capability.

Conclusion

In a nutshell, nuclear proliferation is difficult to contain, citing the case studies of Iraq and China's assistance of other countries in their pursuit of nuclear weapons. The weaknesses in the non-proliferation regime eventually undermine its ability to achieve its objectives. Although the purpose of the NPT was to stop the spread of nuclear weapons, the member countries have nonetheless exploited its inherent loopholes within the treaty. For instance, countries like Iran, Iraq, and North Korea have capitalized on weaknesses to declare certain nuclear facilities off-limits to IAEA inspections. Moreover, China was initially reluctant to join the NPT and facilitated nuclear proliferation to other countries before joining the treaty. The vagueness in the enforcement mechanism highlights the limitation of the non-proliferation regime, which eventually affects its core objective.

Conversely, the responsibility of the NPT is well-served by the nuclear proliferation, which served as a powerful deterrence in preventing full-scale war between the arch-rivals possessing nuclear weapons. The Cold War showcased how the MAD between the US and the Soviet Union during the Cold War avoided direct military confrontation, even the incident of the Cuban Missile Crisis could not escalate to full-scale nuclear war. Moreover, the fragility of South Asia is well-managed by nuclear deterrence, as it eventually disrupted the chain of full-scale war between India and Pakistan. Although an undeniable risk is attached to the proliferation of nuclear weapons, their deterrence effect outweighs the danger inherent in the nukes. The strategic benefit of deterrence keeps the arch-rival in check through the threat of MAD, and the stability nuclear weapons have provided in the pre- and post-Cold War era cannot be overlooked. To conclude, nuclear weapons should be seen more as a weapon of stability rather than a weapon of warfare.

References

Bahgat, G. (2007). Iraq. In *Proliferation of nuclear weapons in the Middle East* (p. 43). University Press of Florida.

Bahgat, G. (2007). *Proliferation of nuclear weapons in the Middle East*. University Press of Florida.

Battle, J., & Burr, W. (Eds.). (2021). *Israeli attack on Iraq's Osirak 1981: Setback or impetus for nuclear weapons?* National Security Archive. <https://nsarchive.gwu.edu/briefing-book/iraq-nuclear-vault/2021-06-07/osirak-israels-strike-iraqs-nuclear-reactor-40-years-later>

Brodie, B. (2008). The absolute weapon. In *Strategic studies* (pp. 193–233). Routledge.

Bunn, G. (2003). The nuclear nonproliferation treaty: History and current problems. *Arms Control Today*, 33(10), 4–10.

Bunn, G. (2003). The nuclear nonproliferation treaty: History and current problems. *Arms Control Today*, 33(10), 4–10.

Burr, W. (Ed.). (2004). *China, Pakistan, and the bomb: The declassified file on U.S. policy, 1977–1997* (Electronic Briefing Book No. 114). National Security Archive. <https://nsarchive2.gwu.edu/NSAEBB/NSAEBB114/index.htm>

Carlson, J. (2009). Defining noncompliance: NPT safeguards agreements. *Arms Control Today*, 39(4), 22.

Davis, Z. S. (1995). China's nonproliferation and export control policies: Boom or bust for the NPT regime? *Asian Survey*, 35(6), 587–603. <https://doi.org/10.2307/2645711>

Eaglen, M., & Ferrari, J. (2022). Conventional deterrence and Taiwan's independence: Necessary investments. *Æther: A Journal of Strategic Airpower & Spacepower*, 1(2), 29–42. https://www.airuniversity.af.edu/Portals/10/AEtherJournal/Journals/Volume-1_Issue-2/Eaglen-Ferrari.pdf

Faisal, M. (2020). Pakistan–China relations. *Strategic Studies*, 40(2), 23–44.

Garver, J. W. (2006). China's assistance to Iran's nuclear programs. In *China & Iran: Ancient partners in a post-imperial world* (p. 143). University of Washington Press.

Garver, J. W. (2006). China's assistance to Iran's nuclear programs. In *China & Iran: Ancient partners in a post-imperial world* (p. 147). University of Washington Press.

Gill, B. (1998). Chinese arms exports to Iran. *Middle East Review of International Affairs*, 2(2). https://ciaotest.cc.columbia.edu/olj/meria/meria598_gill.html

Hasan, Z. (1969). Pakistan's relations with the U.S.S.R. in the 1960s. *The World Today*, 25(1), 26–35. <http://www.jstor.org/stable/40394188>

Hoagland, J. (1990, September 12). Transcript shows muted U.S. response to threat by Saddam in late July. *The Washington Post*. <https://www.washingtonpost.com>

Holloway, D. (1981). Entering the nuclear arms race: The Soviet decision to build the atomic bomb, 1939–45. *Social Studies of Science*, 11(2), 159–197.

Hunt, G. (1986). China's case against the nuclear non-proliferation treaty: Rationality and morality. *Journal of Applied Philosophy*, 3(2), 183–199.

Hymans, J. (2006). "We have a big bomb now": India's nuclear U-turn. In *The psychology of nuclear proliferation: Identity, emotions, and foreign policy* (p. 177). Cambridge University Press.

International Atomic Energy Agency. (2025, May 22). Director General Grossi highlights China as indispensable IAEA partner, leader in nuclear energy. <https://www.iaea.org/newscenter/news/directorgeneral-grossi-highlights-china-as-indispensable-iaea-partner-leader-in-nuclearenergy>

Krieger, Z., & Roth, A. I. (2007). Nuclear weapons in neo-realist theory. *International Studies Review*, 9(3), 369–384. <https://www.jstor.org/stable/4621831>

Levy, A., & Scott-Clark, C. (2007). Into the valley of death. In *Deception: Pakistan, the United States, and the secret trade in nuclear weapons* (p. 61). Walker Publishing Company.

Madoka, F. (2022). The Xi Jinping regime's maneuvering against Taiwan: Characteristics and prospects. *Asia-Pacific Review*. <https://doi.org/10.1080/13439006.2022.2105523>

Mazarr, M. J. (2018). *Understanding deterrence*. RAND Corporation. <https://www.rand.org/pubs/perspectives/PE295.html>

Müller, H., & Wunderlich, C. (2020). Nuclear disarmament without the nuclear-weapon states: The nuclear weapon ban treaty. *Daedalus*, 149(2), 171–189. <https://www.jstor.org/stable/48591319>

Narang, V. (2010). Posturing for peace? Pakistan's nuclear postures and South Asian stability. *International Security*, 34(3), 38–78. <https://www.jstor.org/stable/40389233>

NATO. (2023, July 4). Collective defence and Article 5. https://www.nato.int/cps/en/natohq/topics_110496.htm

Nichols, W. G., & Addington, L. H. (1987). The policy of the United States on nuclear weapons, 1945–1985. In W. G. Nichols & M. L. Boykin (Eds.), *Arms control and nuclear weapons: U.S. policies and the national interest* (pp. 43–59). Praeger.

Nuclear Threat Initiative. (2024, June 28). *Pakistan*. <https://www.nti.org/countries/pakistan/>

Ogilvie-White, T. (1996). Is there a theory of nuclear proliferation? An analysis of the contemporary debate. *The Nonproliferation Review*, 4(1), 43–60.

Perry, W. J. (1991). Desert Storm and deterrence. *Foreign Affairs*, 70(4), 66–82. <https://www.jstor.org/stable/20044914>

Potter, W. C. (1982). The politics of nonproliferation. In *Nuclear power and nonproliferation* (pp. 131–196). Oelgeschlager, Gunn & Hain.

Ramana, S. M. (2011). *China–Pakistan nuclear alliance: An analysis* (Special Report No. 109). Institute of Peace and Conflict Studies. <http://www.jstor.org/stable/resrep09264>

Rauf, T. (2000). An unequivocal success? Implications of the NPT Review Conference. *Arms Control Today*, 30(6), 9–16.

Reardon, R. J. (2012). Iran's nuclear program: Past, present, and future. In *Containing Iran: Strategies for addressing the Iranian nuclear challenge* (pp. 9–64). RAND Corporation.

Samore, G. (1994). Iraq. In M. Reiss & R. Litwak (Eds.), *Nuclear proliferation after the Cold War* (p. 17). Woodrow Wilson Center Press.

Schelling, T. C. (2008). Arms and influence. In *Strategic studies* (pp. 96–114). Routledge.

Shen, D. (2008). China's nuclear perspective: Deterrence reduction, nuclear non-proliferation, and disarmament. *Strategic Analysis*, 32(4), 643. <https://doi.org/10.1080/09700160802214409>

Singh, K. (1979, July 1). Pakistan, India and the bomb. *The New York Times*. <https://www.nytimes.com/1979/07/01/archives/foreign-affairs-pakistan-india-and-the-bomb.html>

U.S. Department of State. (1980). Memorandum of conversation, January 12, 1980. In *Foreign relations of the United States, 1977–1980, Volume XIX, South Asia* (Doc. 407). <https://history.state.gov/historicaldocuments/frus1977-80v19/d407>

U.S. Department of State. (2022, August 15). *U.S. relations with Pakistan*. <https://www.state.gov/u-s-relations-with-pakistan/>

U.S. Department of State. (2025). *India–Pakistan War of 1965*. Office of the Historian. <https://history.state.gov/milestones/1961-1968/india-pakistan-war>

U.S. Department of State. (n.d.). *U.S. relations with Taiwan*. <https://www.state.gov/u-s-relations-with-taiwan/>

United Nations Security Council. (1981). *Resolution 487 (1981)*. United Nations.

United Nations. (2025). *Treaty on the Non-Proliferation of Nuclear Weapons (NPT)*. United Nations Office for Disarmament Affairs. <https://disarmament.unoda.org/wmd/nuclear/npt/>

United Nations. (2025). *Treaty on the Non-Proliferation of Nuclear Weapons (NPT)*. United Nations Office for Disarmament Affairs. <https://disarmament.unoda.org/wmd/nuclear/npt/>

United States Institute of Peace. (2023, June 28). *Iran & China: Military ties*. <https://iranprimer.usip.org/blog/2023/jun/28/iran-china-military-ties>

Waltz, K. (2000). Is Kenneth Waltz still M.A.D. about nukes? *Georgetown Journal of International Affairs*. <https://www.jstor.org/stable/43134004>

Waltz, K. N. (1981). *The spread of nuclear weapons: More may be better* (Adelphi Paper No. 171). International Institute for Strategic Studies.

Waltz, K. N. (1990). Nuclear myths and political realities. *American Political Science Review*, 84(3), 730–745. <https://doi.org/10.2307/1962764>

Wilson, R. (1991). Nuclear proliferation and the case of Iraq. *Journal of Palestine Studies*, 20(3), 5–15. <https://doi.org/10.2307/2537541>

Zifferero, M. (1993). The IAEA: Neutralizing Iraq's nuclear weapons potential. *Arms Control Today*, 23(3), 7–10. <http://www.jstor.org/stable/23624950>